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Background – Why MPTCP？

• Avoid service interruption caused by failure of a 
single network node or a single network path
- MPTCP establishes multiple TCP sub-flows between 

computing nodes, and can quickly detect a sub-flow 
failure and switch traffic to others

• Maximize utilization of network bandwidth
- A single flow cannot meet the bandwidth requirements 

of some applications

- MPTCP setups multiple sub-flows by using different 
source ports and distribute traffic among all sub-flows

• Large-scale existing TCP-based applications
- MPTCP can fallback to TCP

• Linux kernel support since 5.6
- Easy to scale in data centers



Background – Why DPDK based MPTCP？

• High Performance Packet Processing Requirements

- Bottlenecks in kernel-based MPTCP

- DPDK Acceleration: 
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Background – Why DPDK based MPTCP？

• Optimized Multipath Transmission

- DPDK enables User-space traffic scheduling algorithms to 
achieve Fine Grained Path Control

- DPDK’s fast processing supports more flexible congestion 
control, path selection and traffic distribution
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Background – Why DPDK based MPTCP？

• Resource Utilization and Scalability

- DPDK inherently supports parallel processing across CPU 
cores

- Virtualization and Container Acceleration based on SR-IOV

HW VM Container

NIC Drivers

Kernel
TCP/MPTCP Stack

User-space
MPTCP/TCP Stack

Applications

PMD PMD

VF VFNIC



Background – Why DPDK based MPTCP？

• Flexibility and Customization

- DPDK’s user-space implementation allows protocol logic modifications 
without kernel complexity

- Can interoperate with SDN controllers for dynamic path adjustments

- Can integrate with NFV to enable intelligent traffic steering in service 
chains
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Design - Architecture

• MPTCP/TCP as a dedicated service

- Dedicated process to support multiple 
applications

- Communicating with application via shared 
memory

- API is integrated into applications as SDK

- On top of DPDK

- Use flow bifurcation (NV NIC) or SRIOV (non-NV 
NIC) to distribute traffic on NIC

- Composed of 3 modules:

* Socket Manager

* Path Manager

* Packet Scheduler
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Design - Architecture

• Socket Manger

- Context Management of MPTCP sockets

- Mapping with TCP sockets
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Design - Architecture

• Path Manger

- Responsible for the life cycle management of 
sub-flows:

* creation

* deletion

* address announcements
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Design - Architecture

• Packet Scheduler

- Responsible for selecting which available sub-flow(s) to 
use to send the next data packet

- Can decide to maximize the use of the available bandwidth

- Configurable policies: 

* Round robin

* Pick the path with the lower latency

* Any other policy depending on the configuration Pluggable user-space 
TCP stack
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Design – Pluggable user-space TCP stack

• Decoupling from the underly TCP stack

- Introduce a TCP adaptation layer

- Integrate the underly TCP stack as a library

• Can switch the underly stack as needed to upgrade the 
existing user-space TCP to MPTCP
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Design – Keep sharing nothing among PMDs

MPTCP socket

TCP socket TCP socket
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The purpose is to ensure that all sub-flows of the same 
MPTCP connection are processed in the same DPDK PMD 
to achieve lock-free forwarding

• Client

- new connections uses port ranges rte-flow

- connection forwarding uses 5 tuple rte-flow

• Server

- new connections uses listen ports rte-flow per PMD

- connection forwarding uses 5 tuple rte-flow



Design – Compatible with kernel

• Fallback

- User-space MPTCP fallbacks to user-space TCP

- Kernel MPTCP fallbacks to kernel TCP

- Applications fallbacks to kernel stack in case of 
user-space stack unavailable

• Comply with RFC specs

- User-space MPTCP is compatible with Kernel 
MPTCP

- User-space TCP is compatible with kernel TCP

- Enable One-sided deployment
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Performance Data

• Test Environment Setup

- Two compute nodes inside different Data Center

- Average network latencies between the two nodes are 
about 10ms

- MPTCP connections creates 3+ sub-flows

- The following charts are drawn based on the average 
fitting of 10 times test data



Performance Data

• User-space TCP vs User-space MPTCP（Forwarding Throughput）



Performance Data

• User-space TCP vs user-space MPTCP（Forwarding Latency）
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Performance Data

• User-space TCP vs user-space MPTCP（Latency under Packet Drop）
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Performance Data

• User-space TCP vs User-space MPTCP（Latency under Packet Delay）
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Future Work

• Performance tunning

• More packet scheduling polices

• Integrate with more user-space TCP stacks
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