
User-space MPTCP Practices
inside Data Center

System Techonology Engineer (STE)
ByteDance

10th March 2025

NetDev 0x19
youzhiqiang@bytedance.com

wangwanchen.0316@bytedance.com

mailto:youzhiqiang@bytedance.com
mailto:wangwanchen.0316@bytedance.com

Agenda

• Background

- Why MPTCP？

- Why DPDK based MPTCP？

• Design

• Performance Data

• Future Work

Background – Why MPTCP？

• Avoid service interruption caused by failure of a
single network node or a single network path
- MPTCP establishes multiple TCP sub-flows between

computing nodes, and can quickly detect a sub-flow
failure and switch traffic to others

• Maximize utilization of network bandwidth
- A single flow cannot meet the bandwidth requirements

of some applications

- MPTCP setups multiple sub-flows by using different
source ports and distribute traffic among all sub-flows

• Large-scale existing TCP-based applications
- MPTCP can fallback to TCP

• Linux kernel support since 5.6
- Easy to scale in data centers

Background – Why DPDK based MPTCP？

• High Performance Packet Processing Requirements

- Bottlenecks in kernel-based MPTCP

- DPDK Acceleration:

Kernel bypass

Zero Copy

Batch Processing

Polling mode

HW VM Container

NIC Drivers

Kernel
TCP/MPTCP Stack

User-space
MPTCP/TCP Stack

Applications

Background – Why DPDK based MPTCP？

• Optimized Multipath Transmission

- DPDK enables User-space traffic scheduling algorithms to
achieve Fine Grained Path Control

- DPDK’s fast processing supports more flexible congestion
control, path selection and traffic distribution

HW VM Container

NIC Drivers

Kernel
TCP/MPTCP Stack

User-space
MPTCP/TCP Stack

Applications

PM CC

Background – Why DPDK based MPTCP？

• Resource Utilization and Scalability

- DPDK inherently supports parallel processing across CPU
cores

- Virtualization and Container Acceleration based on SR-IOV

HW VM Container

NIC Drivers

Kernel
TCP/MPTCP Stack

User-space
MPTCP/TCP Stack

Applications

PMD PMD

VF VFNIC

Background – Why DPDK based MPTCP？

• Flexibility and Customization

- DPDK’s user-space implementation allows protocol logic modifications
without kernel complexity

- Can interoperate with SDN controllers for dynamic path adjustments

- Can integrate with NFV to enable intelligent traffic steering in service
chains

HW VM Container

NIC Drivers

Kernel
TCP/MPTCP Stack

User-space
MPTCP/TCP Stack

Applications

Pluggable TCP stack

Controllers

Design - Architecture

• MPTCP/TCP as a dedicated service

- Dedicated process to support multiple
applications

- Communicating with application via shared
memory

- API is integrated into applications as SDK

- On top of DPDK

- Use flow bifurcation (NV NIC) or SRIOV (non-NV
NIC) to distribute traffic on NIC

- Composed of 3 modules:

* Socket Manager

* Path Manager

* Packet Scheduler

Pluggable user-space
TCP stack

MPTCP

Path
Manager

Socket
Manager

Packet
Scheduler

API

Applications

DPDK

NIC

Flow bifurcation/SRIOV

Shared memory

Design - Architecture

• Socket Manger

- Context Management of MPTCP sockets

- Mapping with TCP sockets

Pluggable user-space
TCP stack

MPTCP

Path
Manager

Socket
Manager

Packet
Scheduler

API

Applications

DPDK

NIC

Flow bifurcation/SRIOV

Shared memory

Design - Architecture

• Path Manger

- Responsible for the life cycle management of
sub-flows:

* creation

* deletion

* address announcements

Pluggable user-space
TCP stack

MPTCP

Path
Manager

Socket
Manager

Packet
Scheduler

API

Applications

DPDK

NIC

Flow bifurcation/SRIOV

Shared memory

Design - Architecture

• Packet Scheduler

- Responsible for selecting which available sub-flow(s) to
use to send the next data packet

- Can decide to maximize the use of the available bandwidth

- Configurable policies:

* Round robin

* Pick the path with the lower latency

* Any other policy depending on the configuration Pluggable user-space
TCP stack

MPTCP

Path
Manager

Socket
Manager

Packet
Scheduler

API

Applications

DPDK

NIC

Flow bifurcation/SRIOV

Shared memory

Design – Pluggable user-space TCP stack

• Decoupling from the underly TCP stack

- Introduce a TCP adaptation layer

- Integrate the underly TCP stack as a library

• Can switch the underly stack as needed to upgrade the
existing user-space TCP to MPTCP

Seastar

MPTCP

F-stack Libtpa …

TCP Adaptation Layer

DPDK

Design – Keep sharing nothing among PMDs

MPTCP socket

TCP socket TCP socket

D
PD

K PM
D

1

D
PD

K PM
D

2
MPTCP socket

TCP socket TCP socket

RTE flow

The purpose is to ensure that all sub-flows of the same
MPTCP connection are processed in the same DPDK PMD
to achieve lock-free forwarding

• Client

- new connections uses port ranges rte-flow

- connection forwarding uses 5 tuple rte-flow

• Server

- new connections uses listen ports rte-flow per PMD

- connection forwarding uses 5 tuple rte-flow

Design – Compatible with kernel

• Fallback

- User-space MPTCP fallbacks to user-space TCP

- Kernel MPTCP fallbacks to kernel TCP

- Applications fallbacks to kernel stack in case of
user-space stack unavailable

• Comply with RFC specs

- User-space MPTCP is compatible with Kernel
MPTCP

- User-space TCP is compatible with kernel TCP

- Enable One-sided deployment

User-space
TCP

User-space
MPTCP

Kernel TCP Kernel MPTCP
fallback

fallback

Applications

fallbackfallback

Performance Data

• Test Environment Setup

- Two compute nodes inside different Data Center

- Average network latencies between the two nodes are
about 10ms

- MPTCP connections creates 3+ sub-flows

- The following charts are drawn based on the average
fitting of 10 times test data

Performance Data

• User-space TCP vs User-space MPTCP（Forwarding Throughput）

Performance Data

• User-space TCP vs user-space MPTCP（Forwarding Latency）

10
00

0

10
50

0

11
00

0

11
50

0

12
00

0

12
50

0

13
00

0

13
50

0

100 1000 10000 60000

la
te

nc
y

(u
s)

pkt len (byte)

utcp vs mptcp latency

utcp min utcp p90 utcp p99 umptcp min umptcp p90 umptcp p99

Performance Data

• User-space TCP vs user-space MPTCP（Latency under Packet Drop）

12223.746 13524.99 13430.53

199928.32

0

12448.7936 13651.712 13561.856

200013.056

0

13031.7056 14025.472

197730.56 200140.8

0

-10000

40000

90000

140000

190000

240000

0 0.003 0.03 0.33 1

la
te

nc
y

(u
s)

pkt drop rate (%)

utcp vs umptcp latency

utcp min utcp p90 utcp p99 umptcp min umptcp p90 umptcp p99

Performance Data

• User-space TCP vs User-space MPTCP（Latency under Packet Delay）

10000

11000

12000

13000

14000

15000

16000

17000

18000

0% 0ms 3% 3ms 13% 3ms 33% 3ms 100% 3ms

la
te

nc
y

(u
s)

percent (%) latency (ms)

utcp vs umptcp latency

utcp min utcp p90 utcp p99 umptcp min umptcp p90 umptcp p99

Future Work

• Performance tunning

• More packet scheduling polices

• Integrate with more user-space TCP stacks

THANKS

